
C# : Task

Achref El Mouelhi

Docteur de l’université d’Aix-Marseille
Chercheur en programmation par contrainte (IA)

Ingénieur en génie logiciel

elmouelhi.achref@gmail.com

H & H: Research and Training 1 / 54

Plan

1 Introduction

2 Task : async/await
Sans méthode
Avec méthode

3 Task<T>

4 WhenAll
Sans résultat
Avec résultat

H & H: Research and Training 2 / 54

Plan

5 WhenAny

6 Parallélisme
Run
Wait

7 FromResult

8 Annulation avec CancellationToken

H & H: Research and Training 3 / 54

Plan

9 Progression et reporting

10 Gestion des exceptions

11 Cycle de vie d’une Task

12 ValueTask<T>

13 Bonnes pratiques (synthèse)

14 Exercices

H & H: Research and Training 4 / 54

© Achref EL MOUELHI ©

Introduction

C#

Pourquoi l’asynchronisme?

Accès réseau, disque, base de données, API...

Opérations lentes

Exécution synchrone ⇒ blocage

Objectif

Ne pas bloquer l’UI

Libérer les threads serveur

H & H: Research and Training 5 / 54

© Achref EL MOUELHI ©

Introduction

C#

Pourquoi l’asynchronisme?

Accès réseau, disque, base de données, API...

Opérations lentes

Exécution synchrone ⇒ blocage

Objectif

Ne pas bloquer l’UI

Libérer les threads serveur

H & H: Research and Training 5 / 54

© Achref EL MOUELHI ©

Introduction

C#

Pourquoi les Tasks?

Réactivité : Ne pas bloquer l’interface utilisateur (UI).

Performance : Utiliser efficacement les processeurs multi-cœurs.

Abstraction : Plus simple et moins coûteux que de gérer des Threads manuellement.

Définition

Task : représente une opération asynchrone qui se termine plus tard (équivalent des
Promise en JavaScript).

Task<T> : opération asynchrone qui retourne une valeur.

async/await : syntaxe qui rend l’asynchrone lisible et composable.

H & H: Research and Training 6 / 54

© Achref EL MOUELHI ©

Introduction

C#

Pourquoi les Tasks?

Réactivité : Ne pas bloquer l’interface utilisateur (UI).

Performance : Utiliser efficacement les processeurs multi-cœurs.

Abstraction : Plus simple et moins coûteux que de gérer des Threads manuellement.

Définition

Task : représente une opération asynchrone qui se termine plus tard (équivalent des
Promise en JavaScript).

Task<T> : opération asynchrone qui retourne une valeur.

async/await : syntaxe qui rend l’asynchrone lisible et composable.

H & H: Research and Training 6 / 54

© Achref EL MOUELHI ©

Introduction

C#

Ne pas confondre Thread et Task.

H & H: Research and Training 7 / 54

© Achref EL MOUELHI ©

Introduction

C#

Le Thread

La plus petite unité d’exécution qu’un système d’exploitation peut planifier et exécuter.

Chaque thread possède sa propre pile d’appels (stack), mais partage la mémoire avec les
autres threads du même programme

Créer un thread manuellement est une opération "coûteuse" en termes de ressources
(mémoire et temps processeur).

Le ThreadPool (Bassin de threads)

Une collection de threads gérés par l’environnement d’exécution (le CLR en .NET).

Au lieu de créer et détruire un thread pour chaque petite tâche, le programme pioche un
thread déjà existant dans un "bassin" (pool), l’utilise, puis le remet à disposition une fois le
travail fini.

H & H: Research and Training 8 / 54

© Achref EL MOUELHI ©

Introduction

C#

Le Thread

La plus petite unité d’exécution qu’un système d’exploitation peut planifier et exécuter.

Chaque thread possède sa propre pile d’appels (stack), mais partage la mémoire avec les
autres threads du même programme

Créer un thread manuellement est une opération "coûteuse" en termes de ressources
(mémoire et temps processeur).

Le ThreadPool (Bassin de threads)

Une collection de threads gérés par l’environnement d’exécution (le CLR en .NET).

Au lieu de créer et détruire un thread pour chaque petite tâche, le programme pioche un
thread déjà existant dans un "bassin" (pool), l’utilise, puis le remet à disposition une fois le
travail fini.

H & H: Research and Training 8 / 54

© Achref EL MOUELHI ©

Introduction

C#

Qui les gère?

L’OS gère les threads physiques et décide quel thread a accès au processeur
(ordonnancement).

Le CLR gère le ThreadPool. Il ajuste dynamiquement le nombre de threads disponibles
selon la charge de travail pour optimiser les performances

Pourquoi utiliser des Tasks plutôt que des Threads?

Une Task ne signifie pas forcément un nouveau thread.

Elle est gérée par le Task Scheduler, qui décide si la tâche doit être exécutée sur le
ThreadPool (via Task.Run pour du calcul intensif) ou si elle peut simplement "attendre"
sans consommer de thread (via await pour de l’I/O réseau ou disque).

H & H: Research and Training 9 / 54

© Achref EL MOUELHI ©

Introduction

C#

Qui les gère?

L’OS gère les threads physiques et décide quel thread a accès au processeur
(ordonnancement).

Le CLR gère le ThreadPool. Il ajuste dynamiquement le nombre de threads disponibles
selon la charge de travail pour optimiser les performances

Pourquoi utiliser des Tasks plutôt que des Threads?

Une Task ne signifie pas forcément un nouveau thread.

Elle est gérée par le Task Scheduler, qui décide si la tâche doit être exécutée sur le
ThreadPool (via Task.Run pour du calcul intensif) ou si elle peut simplement "attendre"
sans consommer de thread (via await pour de l’I/O réseau ou disque).

H & H: Research and Training 9 / 54

© Achref EL MOUELHI ©

Introduction

C#

Thread vs Task

Caractéristique Thread (Bas niveau) Task (Haut niveau)

Modèle 1 thread = 1 ressource OS. Modèle de promesse.

Ressources Coûteux (mémoire, stack). Léger, optimisé par le CLR.

Gestion Manuelle (Start, Join, Abort). Automatisée (async/await).

Retour Pas de retour de valeur direct. Retourne Task<T> facilement.

Usage Rarement utilisé directement. Standard moderne en .NET.

async ̸= nouveau thread

H & H: Research and Training 10 / 54

© Achref EL MOUELHI ©

Introduction

C#

Thread vs Task

Caractéristique Thread (Bas niveau) Task (Haut niveau)

Modèle 1 thread = 1 ressource OS. Modèle de promesse.

Ressources Coûteux (mémoire, stack). Léger, optimisé par le CLR.

Gestion Manuelle (Start, Join, Abort). Automatisée (async/await).

Retour Pas de retour de valeur direct. Retourne Task<T> facilement.

Usage Rarement utilisé directement. Standard moderne en .NET.

async ̸= nouveau thread

H & H: Research and Training 10 / 54

© Achref EL MOUELHI ©

Task : async/await Sans méthode

C#

Exemple 1 : Task.Delay (le plus simple)

namespace ProjetTask
{

class Program
{

static async Task Main()
{

Console.WriteLine("Début");

// libère le thread pendant l'attente de 2 secondes
await Task.Delay(2000);

Console.WriteLine("Fin");
}

}
}

H & H: Research and Training 11 / 54

© Achref EL MOUELHI ©

Task : async/await Sans méthode

C#

Explications

await ne bloque pas le thread, il suspend l’exécution de la méthode et rend la
main au système.

Signature de la méthode

async obligatoire pour les méthodes asynchrones.

Task (pas void)

La méthode reprend après la fin de la tâche

H & H: Research and Training 12 / 54

© Achref EL MOUELHI ©

Task : async/await Avec méthode

C#

Exemple 2 : utiliser une méthode

namespace ProjetTask
{

class Program
{

static async Task MethodeAsync()
{

Console.WriteLine("Début");
await Task.Delay(2000);
Console.WriteLine("Fin");

}

static async Task Main()
{

await MethodeAsync();
}

}
}

H & H: Research and Training 13 / 54

© Achref EL MOUELHI ©

Task : async/await Avec méthode

C#

Explications

L’asynchronisme se propage

async remonte dans la pile d’appels

H & H: Research and Training 14 / 54

© Achref EL MOUELHI ©

Task<T>

C#

Exemple 3 : Task<T> (retour de valeur)

namespace ProjetTask
{

class Program
{

static async Task<int> CalculerAsync()
{

Console.WriteLine("Début");
await Task.Delay(2000);
return 42;

}

static async Task Main()
{

int resultat = await CalculerAsync();
Console.WriteLine(resultat);

}
}

}

H & H: Research and Training 15 / 54

© Achref EL MOUELHI ©

Task<T>

C#

Explications

Task<int> : promesse d’un int futur.

await récupère automatiquement la valeur une fois disponible.

H & H: Research and Training 16 / 54

© Achref EL MOUELHI ©

WhenAll Sans résultat

C#

Exemple : Task.WhenAll (paralléliser l’attente)

namespace ProjetTask
{

class Program
{

static async Task Main()
{

Console.WriteLine("Début");
Task t1 = Task.Delay(3000);
Task t2 = Task.Delay(5000);
Task t3 = Task.Delay(2000);

await Task.WhenAll(t1, t2, t3);
Console.WriteLine("Tout est terminé");

}
}

}

H & H: Research and Training 17 / 54

© Achref EL MOUELHI ©

WhenAll Sans résultat

C#

Explications

Le programme précédent lance plusieurs tâches, puis attend toutes.

t1 démarre : un compte à rebours de 3 secondes commence.

t2 démarre immédiatement après : un compte à rebours de 5 secondes
commence (pendant que t1 tourne encore).

t3 démarre immédiatement après : un compte à rebours de 2 secondes
commence (pendant que t1 et t2 tournent encore).

await Task.WhenAll(t1, t2, t3) : le programme fait une pause ici et
attend que les trois chronomètres soient arrivés à zéro.

H & H: Research and Training 18 / 54

© Achref EL MOUELHI ©

WhenAll Sans résultat

C#

Pour résumer

Les tâches démarrent en parallèle

Temps total = durée de la plus longue tâche

H & H: Research and Training 19 / 54

© Achref EL MOUELHI ©

WhenAll Sans résultat

C#

Si l’exécution était séquentielle (l’une après l’autre), le programme prendrait 3
+ 5 + 2 = 10 secondes.

await Task.Delay(3000); // Attend 3s
await Task.Delay(5000); // Puis attend 5s
await Task.Delay(2000); // Puis attend 2s
// total = 10 secondes

H & H: Research and Training 20 / 54

© Achref EL MOUELHI ©

WhenAll Avec résultat

C#
Exemple : WhenAll avec résultats

namespace ProjetTask
{

class Program
{

static async Task<int> CalculerValeur(int id, int delai)
{

await Task.Delay(delai);
return id * 10;

}
static async Task Main()
{

Task<int> t1 = CalculerValeur(1, 3000);
Task<int> t2 = CalculerValeur(2, 5000);
Task<int> t3 = CalculerValeur(3, 2000);

await Task.WhenAll(t1, t2, t3);

int resultat1 = t1.Result;
int resultat2 = t2.Result;
int resultat3 = t3.Result;

Console.WriteLine($"Résultats : {resultat1}, {resultat2}, {resultat3}");
}

}
}

H & H: Research and Training 21 / 54

© Achref EL MOUELHI ©

WhenAll Avec résultat

C#

Explications

Le programme précédent commence par lancer les tâches en parallèle.

t1 retourne 10 après 3 secondes.

t2 retourne 20 après 5 secondes.

t3 retourne 30 après 2 secondes.

await Task.WhenAll(t1, t2, t3) : le programme fait une pause ici et
attend que les trois chronomètres soient arrivés à zéro.

Il récupères les résultats.

Le programme aura duré 5 secondes au total.

H & H: Research and Training 22 / 54

© Achref EL MOUELHI ©

WhenAll Avec résultat

C#

Schématisation

t1: |------3s------|
t2: |----------5s----------|
t3: |----2s----|

H & H: Research and Training 23 / 54

© Achref EL MOUELHI ©

WhenAll Avec résultat

C#
WhenAll retourne directement un T[]

namespace ProjetTask
{

class Program
{

static async Task<int> CalculerValeur(int id, int delai)
{

await Task.Delay(delai);
return id * 10;

}
static async Task Main()
{

int[] res = await Task.WhenAll(
CalculerValeur(1, 3000),
CalculerValeur(2, 5000),
CalculerValeur(3, 2000)

);
Console.WriteLine(string.Join(", ", res));

}
}

}

H & H: Research and Training 24 / 54

© Achref EL MOUELHI ©

WhenAny

C#
Exemple : WhenAny (première tâche terminée)

namespace ProjetTask
{

class Program
{

static async Task<string> RequeteAsync(string nom, int ms)
{

await Task.Delay(ms);
return $"Réponse {nom}";

}

static async Task Main()
{

Console.WriteLine("Début");
Task<string> a = RequeteAsync("A", 6000);
Task<string> b = RequeteAsync("B", 2000);

Task<string> first = await Task.WhenAny(a, b);
Console.WriteLine(first.Result);

}
}

H & H: Research and Training 25 / 54

© Achref EL MOUELHI ©

WhenAny

C#

Remarques

WhenAny retourne la première tâche terminée

Les autres continuent à s’exécuter

H & H: Research and Training 26 / 54

© Achref EL MOUELHI ©

Parallélisme Run

C#

Remarques

async/await sert à ne pas bloquer pendant l’attente.

Task.Run sert à déplacer du calcul sur un autre thread (parallélisme).

Pour simplifier

async/await ⇒ I/O-bound

Task.Run ⇒ CPU-bound.

Ne pas utiliser Task.Run pour des appels réseau

H & H: Research and Training 27 / 54

© Achref EL MOUELHI ©

Parallélisme Run

C#

Remarques

async/await sert à ne pas bloquer pendant l’attente.

Task.Run sert à déplacer du calcul sur un autre thread (parallélisme).

Pour simplifier

async/await ⇒ I/O-bound

Task.Run ⇒ CPU-bound.

Ne pas utiliser Task.Run pour des appels réseau

H & H: Research and Training 27 / 54

© Achref EL MOUELHI ©

Parallélisme Run

C#

Remarques

async/await sert à ne pas bloquer pendant l’attente.

Task.Run sert à déplacer du calcul sur un autre thread (parallélisme).

Pour simplifier

async/await ⇒ I/O-bound

Task.Run ⇒ CPU-bound.

Ne pas utiliser Task.Run pour des appels réseau

H & H: Research and Training 27 / 54

© Achref EL MOUELHI ©

Parallélisme Run

C#
Exemple

static async Task Main()
{

Console.WriteLine("Début");
Task t1 = Task.Run(() =>
{

Console.WriteLine("Tâche en cours d'exécution");
});
Console.WriteLine("Fin");

}

Résultat : le thread principal continue sans attendre la fin de la tâche.

Début
Fin
Tâche en cours d'exécution

Ou

Début
Fin

H & H: Research and Training 28 / 54

© Achref EL MOUELHI ©

Parallélisme Run

C#
Exemple

static async Task Main()
{

Console.WriteLine("Début");
Task t1 = Task.Run(() =>
{

Console.WriteLine("Tâche en cours d'exécution");
});
Console.WriteLine("Fin");

}

Résultat : le thread principal continue sans attendre la fin de la tâche.

Début
Fin
Tâche en cours d'exécution

Ou

Début
Fin

H & H: Research and Training 28 / 54

© Achref EL MOUELHI ©

Parallélisme Run

C#
Exemple

static async Task Main()
{

Console.WriteLine("Début");
Task t1 = Task.Run(() =>
{

Console.WriteLine("Tâche en cours d'exécution");
});
Console.WriteLine("Fin");

}

Résultat : le thread principal continue sans attendre la fin de la tâche.

Début
Fin
Tâche en cours d'exécution

Ou

Début
Fin

H & H: Research and Training 28 / 54

© Achref EL MOUELHI ©

Parallélisme Wait

C#

Pour attendre la fin de la tâche avant de poursuivre

static async Task Main()
{

Console.WriteLine("Début");
Task t1 = Task.Run(() =>
{

Console.WriteLine("Tâche en cours d'exécution");
});
t1.Wait();
Console.WriteLine("Fin");

}

Résultat

Début
Tâche en cours d'exécution
Fin

H & H: Research and Training 29 / 54

© Achref EL MOUELHI ©

Parallélisme Wait

C#

Pour attendre la fin de la tâche avant de poursuivre

static async Task Main()
{

Console.WriteLine("Début");
Task t1 = Task.Run(() =>
{

Console.WriteLine("Tâche en cours d'exécution");
});
t1.Wait();
Console.WriteLine("Fin");

}

Résultat

Début
Tâche en cours d'exécution
Fin

H & H: Research and Training 29 / 54

© Achref EL MOUELHI ©

Parallélisme Wait

Remarque

Wait est bloquante et peut provoquer un deadlock.

Deadlock

Une situation où deux (ou plusieurs) entités s’attendent mutuellement de façon circulaire,
si bien que plus aucune ne peut progresser.

Chacun attend que l’autre libère une ressource, qui ne sera jamais libérée.

Contexte typique

Application UI (WPF / WinForms)

ASP.NET classique (pas Core)

H & H: Research and Training 30 / 54

© Achref EL MOUELHI ©

Parallélisme Wait

Remarque

Wait est bloquante et peut provoquer un deadlock.

Deadlock

Une situation où deux (ou plusieurs) entités s’attendent mutuellement de façon circulaire,
si bien que plus aucune ne peut progresser.

Chacun attend que l’autre libère une ressource, qui ne sera jamais libérée.

Contexte typique

Application UI (WPF / WinForms)

ASP.NET classique (pas Core)

H & H: Research and Training 30 / 54

© Achref EL MOUELHI ©

Parallélisme Wait

Remarque

Wait est bloquante et peut provoquer un deadlock.

Deadlock

Une situation où deux (ou plusieurs) entités s’attendent mutuellement de façon circulaire,
si bien que plus aucune ne peut progresser.

Chacun attend que l’autre libère une ressource, qui ne sera jamais libérée.

Contexte typique

Application UI (WPF / WinForms)

ASP.NET classique (pas Core)

H & H: Research and Training 30 / 54

© Achref EL MOUELHI ©

Parallélisme Wait

C#

Solution : utiliser await

static async Task Main()
{

Console.WriteLine("Début");
Task t1 = Task.Run(() =>
{

Console.WriteLine("Tâche en cours d'exécution");
});
await t1;
Console.WriteLine("Fin");

}

Résultat

Début
Tâche en cours d'exécution
Fin

H & H: Research and Training 31 / 54

© Achref EL MOUELHI ©

Parallélisme Wait

C#

Solution : utiliser await

static async Task Main()
{

Console.WriteLine("Début");
Task t1 = Task.Run(() =>
{

Console.WriteLine("Tâche en cours d'exécution");
});
await t1;
Console.WriteLine("Fin");

}

Résultat

Début
Tâche en cours d'exécution
Fin

H & H: Research and Training 31 / 54

© Achref EL MOUELHI ©

FromResult

C#

Problème : rigidité des interfaces

On a une interface asynchrone avec une méthode retournant Task<T>.

L’implémentation possède déjà la donnée (Cache, calcul simple, Mock).

Dilemme : Comment retourner une valeur immédiate sans casser la signature async?

Exemple

public interface ICalculService
{

Task<int> CalculerAsync(int x);
}

H & H: Research and Training 32 / 54

© Achref EL MOUELHI ©

FromResult

C#

Problème : rigidité des interfaces

On a une interface asynchrone avec une méthode retournant Task<T>.

L’implémentation possède déjà la donnée (Cache, calcul simple, Mock).

Dilemme : Comment retourner une valeur immédiate sans casser la signature async?

Exemple

public interface ICalculService
{

Task<int> CalculerAsync(int x);
}

H & H: Research and Training 32 / 54

© Achref EL MOUELHI ©

FromResult

C#

Solution : Task.FromResult

Task.FromResult<T> crée une tâche qui est déjà terminée avec le résultat fourni.

Retourner une valeur au format Task<T> sans création de thread supplémentaire ni
d’asynchronisme réel

Adaptation de signature (compatibilité API) : pas une mise en async.

Exécution purement synchrone.

H & H: Research and Training 33 / 54

© Achref EL MOUELHI ©

FromResult

C#

Exemple

public class CalculService : ICalculService
{

public Task<int> CalculerAsync(int x)
{

return Task.FromResult(x * x);
}

}

Explication

Pas besoin de async/await si le résultat est instantané.

Moins de surcoût qu’une machine d’état async.

H & H: Research and Training 34 / 54

© Achref EL MOUELHI ©

FromResult

C#

Exemple

public class CalculService : ICalculService
{

public Task<int> CalculerAsync(int x)
{

return Task.FromResult(x * x);
}

}

Explication

Pas besoin de async/await si le résultat est instantané.

Moins de surcoût qu’une machine d’état async.

H & H: Research and Training 34 / 54

© Achref EL MOUELHI ©

FromResult

C#

FromResult vs async vs Task.Run

Approche Coût Thread Quand l’utiliser?
Task.FromResult Faible Aucun Valeur immédiate / cache / mocks
async Task<T> Moyen Aucun I/O async réel (...Async)
Task.Run Élevé Thread pool CPU-bound (calcul lourd)

H & H: Research and Training 35 / 54

© Achref EL MOUELHI ©

Annulation avec CancellationToken

C#

Pourquoi annuler?

L’utilisateur change d’avis (UI), timeout métier, arrêt serveur.

Bonne pratique : proposer un CancellationToken sur les méthodes longues.

H & H: Research and Training 36 / 54

© Achref EL MOUELHI ©

Annulation avec CancellationToken

C#
Exemple : annulation

namespace ProjetTask
{

class Program
{

static async Task TravailAnnulableAsync(CancellationToken ct)
{

for (int i = 1; i <= 10; i++)
{

ct.ThrowIfCancellationRequested();
await Task.Delay(300, ct);
Console.WriteLine($"étape {i}");

}
}
static async Task Main()
{

using var cts = new CancellationTokenSource();
cts.CancelAfter(1000);

try
{

await TravailAnnulableAsync(cts.Token);
}
catch (OperationCanceledException)
{

Console.WriteLine("Annulé");
}

}
}

}

H & H: Research and Training 37 / 54

© Achref EL MOUELHI ©

Progression et reporting

C#

Reporter la progression

Les tâches longues peuvent notifier un IProgress<T> (UI friendly).

Progress<T> poste souvent sur le contexte de synchronisation (UI).

H & H: Research and Training 38 / 54

© Achref EL MOUELHI ©

Progression et reporting

C#

Exemple : IProgress<int>

namespace ProjetTask
{

class Program
{

static async Task TravailAvecProgressAsync(IProgress<int> progress)
{

for (int p = 0; p <= 100; p += 20)
{

await Task.Delay(200);
progress?.Report(p);

}
}

static async Task Main()
{

var progress = new Progress<int>(p => Console.WriteLine($"{p}%"));
await TravailAvecProgressAsync(progress);

}
}

}

H & H: Research and Training 39 / 54

© Achref EL MOUELHI ©

Gestion des exceptions

C#

Gestion des exceptions avec async/await

Contrairement aux Threads classiques, l’exception est capturée naturellement par le await

L’exception est encapsulée dans la Task.

Elle est relancée lors de l’appel à await, permettant l’usage d’un bloc try-catch
standard.

H & H: Research and Training 40 / 54

© Achref EL MOUELHI ©

Gestion des exceptions

await déballe l’exception de la Task

namespace ProjetTask
{

class Program
{

static async Task MethodeRisqueeAsync()
{

Console.WriteLine("Avant exécution");
throw new InvalidOperationException();

}

static async Task Main()
{

try
{

await MethodeRisqueeAsync();
}
catch (InvalidOperationException ex)
{

Console.WriteLine($"Exception capturée : {ex.Message}");
}

}
}

}

Résultat

Avant exécution
Exception capturée : Operation is not valid due to the current state of the object.

H & H: Research and Training 41 / 54

© Achref EL MOUELHI ©

Gestion des exceptions

await déballe l’exception de la Task

namespace ProjetTask
{

class Program
{

static async Task MethodeRisqueeAsync()
{

Console.WriteLine("Avant exécution");
throw new InvalidOperationException();

}

static async Task Main()
{

try
{

await MethodeRisqueeAsync();
}
catch (InvalidOperationException ex)
{

Console.WriteLine($"Exception capturée : {ex.Message}");
}

}
}

}

Résultat

Avant exécution
Exception capturée : Operation is not valid due to the current state of the object.

H & H: Research and Training 41 / 54

© Achref EL MOUELHI ©

Cycle de vie d’une Task

C#

Cycle de vie d’une Task

Une Task représente une opération asynchrone qui évolue à travers différents états.

Created / WaitingForActivation : Task instanciée mais n’a pas encore débuté.

Running : l’opération est en cours d’exécution.

Final States :

RanToCompletion : Succès total.

Faulted : Échec via une exception non gérée.

Canceled : Annulation via CancellationToken.

H & H: Research and Training 42 / 54

© Achref EL MOUELHI ©

ValueTask<T>

C#

Optimisation : ValueTask<T>

Pour les scénarios haute performance où le résultat est souvent déjà disponible.

Problème : Task<T> est un objet de classe (alloué sur le tas/heap), ce qui crée une
pression sur le Garbage Collector (GC).

Solution : ValueTask<T> est une structure (allouée sur la pile/stack).

H & H: Research and Training 43 / 54

© Achref EL MOUELHI ©

Bonnes pratiques (synthèse)

C#

Bonnes pratiques essentielles

Préférer les API asynchrones natives : ReadAsync, GetAsync, etc.

Éviter .Result et .Wait() ⇒ risques de blocage/deadlock.

await : libère le thread pendant l’attente (I/O) → le thread peut faire autre chose.

.Wait() / .Result : bloque le thread jusqu’à la fin → on revient à du synchrone.

Propager l’asynchronisme : async « remonte » dans la pile d’appels.

N’utiliser Task.Run que pour du CPU-bound.

Signature : Task/Task<T> (éviter async void sauf événements).

H & H: Research and Training 44 / 54

© Achref EL MOUELHI ©

Bonnes pratiques (synthèse)

C#

Pourquoi await est recommandé?

Ne bloque pas de thread ⇒ meilleure réactivité / scalabilité

Évite les deadlocks en contexte UI / ASP.NET classique

S’intègre proprement avec CancellationToken et IProgress

H & H: Research and Training 45 / 54

© Achref EL MOUELHI ©

Bonnes pratiques (synthèse)

C#

Recommandation selon le contexte

Contexte Bonne pratique

Console async / await

UI (WPF/WinForms) await obligatoire

ASP.NET Core await partout

Bibliothèque await + ConfigureAwait(false)

H & H: Research and Training 46 / 54

© Achref EL MOUELHI ©

Bonnes pratiques (synthèse)

C#

Piège : async void

async void ChargerAsync() { ... }

Règle d’or

async Task ChargerAsync() { ... }

Pourquoi?

Exceptions non capturables

Rupture de la chaîne async

H & H: Research and Training 47 / 54

© Achref EL MOUELHI ©

Bonnes pratiques (synthèse)

C#

Piège : async void

async void ChargerAsync() { ... }

Règle d’or

async Task ChargerAsync() { ... }

Pourquoi?

Exceptions non capturables

Rupture de la chaîne async

H & H: Research and Training 47 / 54

© Achref EL MOUELHI ©

Bonnes pratiques (synthèse)

C#

Piège : async void

async void ChargerAsync() { ... }

Règle d’or

async Task ChargerAsync() { ... }

Pourquoi?

Exceptions non capturables

Rupture de la chaîne async

H & H: Research and Training 47 / 54

© Achref EL MOUELHI ©

Bonnes pratiques (synthèse)

C#

Piège : Task.Run mal utilisé

await Task.Run(() => httpClient.GetAsync(url));

Règle d’or

await httpClient.GetAsync(url);

Pourquoi?

Task.Run pour les calculs, pas pour les I/O

Gaspillage des threads

H & H: Research and Training 48 / 54

© Achref EL MOUELHI ©

Bonnes pratiques (synthèse)

C#

Piège : Task.Run mal utilisé

await Task.Run(() => httpClient.GetAsync(url));

Règle d’or

await httpClient.GetAsync(url);

Pourquoi?

Task.Run pour les calculs, pas pour les I/O

Gaspillage des threads

H & H: Research and Training 48 / 54

© Achref EL MOUELHI ©

Bonnes pratiques (synthèse)

C#

Piège : Task.Run mal utilisé

await Task.Run(() => httpClient.GetAsync(url));

Règle d’or

await httpClient.GetAsync(url);

Pourquoi?

Task.Run pour les calculs, pas pour les I/O

Gaspillage des threads

H & H: Research and Training 48 / 54

© Achref EL MOUELHI ©

Bonnes pratiques (synthèse)

Piège : le code suivant ne capture jamais l’exception

namespace ProjetTask
{

class Program
{

static void Main(string[] args)
{

try
{

TraiterAsync();
}
catch (Exception ex)
{

Console.WriteLine(ex.Message);
}

}

static async Task TraiterAsync()
{

await Task.Delay(1000);
throw new Exception("Erreur !");

}
}

}

H & H: Research and Training 49 / 54

© Achref EL MOUELHI ©

Bonnes pratiques (synthèse)

Il faut le remplacer par

namespace ProjetTask
{

class Program
{

static async Task Main(string[] args)
{

try
{

await TraiterAsync();
}
catch (Exception ex)
{

Console.WriteLine(ex.Message);
}

}

static async Task TraiterAsync()
{

await Task.Delay(1000);
throw new Exception("Erreur !");

}
}

}

H & H: Research and Training 50 / 54

© Achref EL MOUELHI ©

Exercices

C#

Exercice 1 (bases)

1 Écrire AttendreEtAfficherAsync(int ms) qui fait un Task.Delay(ms)
puis affiche OK.

2 Écrire CalculerCarreAsync(int x) qui attend 300ms puis retourne x2.

H & H: Research and Training 51 / 54

© Achref EL MOUELHI ©

Exercices

C#

Exercice 2 (composition)

1 Lancer 3 appels CalculerCarreAsync et afficher les résultats avec WhenAll.

2 Écrire PremierResultatAsync() qui lance deux tâches et affiche la première
terminée via WhenAny.

H & H: Research and Training 52 / 54

© Achref EL MOUELHI ©

Exercices

C#
Correction

static async Task<int> CalculerCarreAsync(int x)
{

// simulation d'un calcul
await Task.Delay(300);
return x * x;

}

static async Task Exercice2_Composition()
{

// lancer les taches en parallèle (elles partent sur le ThreadPool)
Task<int> t1 = CalculerCarreAsync(5);
Task<int> t2 = CalculerCarreAsync(10);
Task<int> t3 = CalculerCarreAsync(8);

// attendre que toutes soient terminees
int[] resultats = await Task.WhenAll(t1, t2, t3);

// affichage
Console.WriteLine($"Resultats : {string.Join(", ", resultats)}");

}

H & H: Research and Training 53 / 54

© Achref EL MOUELHI ©

Exercices

C#

Exercice 3 (annulation et erreurs)

1 Ajouter un CancellationToken à un traitement en boucle et annuler après 1
seconde.

2 Simuler une exception dans une tâche, la capturer proprement autour du await.

H & H: Research and Training 54 / 54

© Achref EL MOUELHI ©

Exercices

Correction

static async Task Exercice3_ExceptionsEtAnnulation()
{

using var cts = new CancellationTokenSource();
cts.CancelAfter(1000); // annulation automatique après 1s

try
{

await TraitementRisqueAsync(cts.Token);
}
catch (OperationCanceledException)
{

// capture l'annulation
Console.WriteLine("Le traitement a depasse le delai imparti.");

}
catch (Exception ex)
{

// Capture une erreur simulée
Console.WriteLine($"Une erreur est survenue : {ex.Message}");

}
}

static async Task TraitementRisqueAsync(CancellationToken ct)
{

for (int i = 0; i < 10; i++)
{

ct.ThrowIfCancellationRequested(); // vérifie l'annulation
await Task.Delay(300, ct); // l'attente est aussi annulable
if (i == 2) throw new Exception("échec critique du calcul !"); // simulation erreur

Console.WriteLine($"Etape {i} terminée");
}

}

H & H: Research and Training 55 / 54

	Introduction
	Task : async/await
	Sans méthode
	Avec méthode

	Task<T>
	WhenAll
	Sans résultat
	Avec résultat

	WhenAny
	Parallélisme
	Run
	Wait

	FromResult
	Annulation avec CancellationToken
	Progression et reporting
	Gestion des exceptions
	Cycle de vie d'une Task
	ValueTask<T>
	Bonnes pratiques (synthèse)
	Exercices

