C# : Task

Achref EI Mouelhi
Docteur de 'université d’Aix-Marseille
Chercheur en programmation par contrainte (l1A)
Ingénieur en génie logiciel

elmouelhi.achref@gmail.com

H & H: Research and Training 1/54

0 Introduction

e Task :async/await
@ Sans méthode
@ Avec méthode

e Task<T>

©Q vrennnn
@ Sans résultat
@ Avec résultat

H & H: Research and Training 2/54

Plan

e WhenAny

©Q Paraliélisme
@ Run
@ Wait

o FromResult

e Annulation avec CancellationToken

H & H: Research and Training 3/54

Q Progression et reporting

@ Gestion des exceptions

Q Cycle de vie d'une Task

@ ValueTask<T>

@ Bonnes pratiques (synthése)

@ Exercices

H & H: Research and Training 4/54

Introduction

Pourquoi I'asynchronisme ?

@ Acces réseau, disque, base de données, API...
@ Opérations lentes

@ Exécution synchrone = blocage

H & H: Research and Training 5/54

Introduction

Pourquoi I'asynchronisme ?
@ Acces réseau, disque, base de données, API...
@ Opérations lentes

@ Exécution synchrone = blocage

@ Ne pas bloquer I'UI

@ Libérer les threads serveur

H & H: Research and Training 5/54

Introduction

Pourquoi les Tasks ?

@ Réactivité : Ne pas bloquer l'interface utilisateur (Ul).
@ Performance : Utiliser efficacement les processeurs multi-coeurs.

@ Abstraction : Plus simple et moins colteux que de gérer des Threads manuellement.

H & H: Research and Training 6/54

Introduction

Pourquoi les Tasks ?

@ Réactivité : Ne pas bloquer l'interface utilisateur (Ul).
@ Performance : Utiliser efficacement les processeurs multi-coeurs.

@ Abstraction : Plus simple et moins colteux que de gérer des Threads manuellement.

Définition

@ Task : représente une opération asynchrone qui se termine plus tard (équivalent des
Promise en JavaScript).

Task<T> : opération asynchrone qui retourne une valeur.

async/await : syntaxe qui rend I'asynchrone lisible et composable.

H & H: Research and Training 6/54

Introduction

Ne pas confondre Thread et Task. J

H & H: Research and Training 7 /54

Introduction

Le Thread

@ La plus petite unité d’exécution qu’un systéme d’exploitation peut planifier et exécuter.

@ Chaque thread posséde sa propre pile d’appels (stack), mais partage la mémoire avec les
autres threads du méme programme

@ Créer un thread manuellement est une opération "coliteuse" en termes de ressources
(mémoire et temps processeur).

H & H: Research and Training 8/54

Introduction

Le Thread

@ La plus petite unité d’exécution qu’un systéme d’exploitation peut planifier et exécuter.

@ Chaque thread posséde sa propre pile d’appels (stack), mais partage la mémoire avec les
autres threads du méme programme

@ Créer un thread manuellement est une opération "coliteuse" en termes de ressources
(mémoire et temps processeur).

Le ThreadPool (Bassin de threads)

@ Une collection de threads gérés par I'environnement d’exécution (le CLR en .NET).

@ Au lieu de créer et détruire un thread pour chaque petite tache, le programme pioche un
thread déja existant dans un "bassin" (pool), I'utilise, puis le remet a disposition une fois le
travail fini.

H & H: Research and Training 8/54

Introduction

Qui les gere ?

@ LOS gere les threads physiques et décide quel thread a acces au processeur
(ordonnancement).

@ Le CLR gere le ThreadPool. Il ajuste dynamiquement le nombre de threads disponibles
selon la charge de travail pour optimiser les performances

H & H: Research and Training 9/54

Introduction

Qui les gere ?

@ LOS gere les threads physiques et décide quel thread a acces au processeur
(ordonnancement).

@ Le CLR gere le ThreadPool. Il ajuste dynamiquement le nombre de threads disponibles
selon la charge de travail pour optimiser les performances

Pourquoi utiliser des Tasks plutét que des Threads ?

@ Une Task ne signifie pas forcément un nouveau thread.

@ Elle est gérée par le Task Scheduler, qui décide si la tache doit étre exécutée sur le
ThreadPool (via Task .Run pour du calcul intensif) ou si elle peut simplement "attendre
sans consommer de thread (via await pour de I'l/O réseau ou disque).

"

H & H: Research and Training 9/54

Thread vs Task

Introduction

Caractéristique Thread (Bas niveau) Task (Haut niveau)

Modele 1 thread = 1 ressource OS. Modele de promesse.
Ressources Colteux (mémoire, stack). Léger, optimisé par le CLR.
Gestion Manuelle (Start, Join, Abort). Automatisée (async/await).
Retour Pas de retour de valeur direct. Retourne Task<T> facilement.
Usage Rarement utilisé directement. Standard moderne en .NET.

10/54

Thread vs Task

Introduction

Caractéristique Thread (Bas niveau) Task (Haut niveau)

Modele 1 thread = 1 ressource OS. Modele de promesse.
Ressources Colteux (mémoire, stack). Léger, optimisé par le CLR.
Gestion Manuelle (Start, Join, Abort). Automatisée (async/await).
Retour Pas de retour de valeur direct. Retourne Task<T> facilement.
Usage Rarement utilisé directement. Standard moderne en .NET.

async # nouveau thread

10/54

Sans méthode

Exemple 1 : Task.Delay (le plus simple)

namespace ProjetTask

{

class Program

{
static async Task Main()
{

Console.WriteLine ("Début") ;

// libére le thread pendant 1l'attente de 2 secondes
await Task.Delay (2000);

Console.WriteLine ("Fin");

H & H: Research and Training 11/54

Sans méthode

Explications

@ await ne bloque pas le thread, il suspend I'exécution de la méthode et rend la
main au systeme.

@ Signature de la méthode

@ async obligatoire pour les méthodes asynchrones.

@ Task (pas void)

@ La méthode reprend aprés la fin de la tache

H & H: Research and Training 12/54

Avec méthode

Exemple 2 : utiliser une méthode

namespace ProjetTask

{

class Program

{
static async Task MethodeAsync ()

{
Console.WriteLine ("Début") ;
await Task.Delay (2000);
Console.WriteLine ("Fin");

static async Task Main()

{
await MethodeAsync();

H & H: Research and Training 13/54

Avec méthode

Explications

@ Lasynchronisme se propage

@ async remonte dans la pile d’'appels

H & H: Research and Training 14 /54

Exemple 3 : Task<T> (retour de valeur)

namespace ProjetTask
{
class Program
{
static async Task<int> CalculerAsync()
{
Console.WriteLine ("Début") ;
await Task.Delay (2000);
return 42;

static async Task Main()

{
int resultat = await CalculerAsync();
Console.WritelLine (resultat);

H & H: Research and Training 15/54

Explications

@ Task<int> :promesse d’'un int futur.

@ await récupére automatiquement la valeur une fois disponible.

H & H: Research and Training 16 /54

nAll Sans résultat

Exemple : Task.WhenAll (paralléliser I'attente)

namespace ProjetTask

{
class Program
{
static async Task Main()
{
Console.WriteLine ("Début") ;
Task tl = Task.Delay (3000);
Task t2 = Task.Delay(5000);
Task t3 = Task.Delay(2000);
await Task.WhenAll (tl, t2, t3);
Console.WriteLine ("Tout est terminé");
}
}
}

H & H: Research and Training 17 /54

enAll Sans résultat

Explicati

@ Le programme précédent lance plusieurs taches, puis attend toutes.
@ t1 démarre : un compte a rebours de 3 secondes commence.

@ t2 démarre immédiatement aprés : un compte a rebours de 5 secondes
commence (pendant que t1 tourne encore).

@ t3 démarre immédiatement aprés : un compte a rebours de 2 secondes
commence (pendant que t1 et t2 tournent encore).

@ await Task.WhenAll (tl, t2, t3) :le programme fait une pause ici et
attend que les trois chronométres soient arrivés a zéro.

H & H: Research and Training 18/54

henAll Sans résultat

Pour résumer

@ Les taches démarrent en paralléle

@ Temps total = durée de la plus longue tache

H & H: Research and Training 19/54

Sans résultat

Si I’exécution était séquentielle (I'une apres I’autre), le programme prendrait 3
+ 5 + 2 = 10 secondes.

await Task.Delay(3000); // Attend 3s
await Task.Delay(5000); // Puis attend 5s
await Task.Delay(2000); // Puis attend 2s
// total = 10 secondes

H & H: Research and Training 20/54

Avec résultat

Exemple : WhenAll avec résultats

namespace ProjetTask

{

class Program

{

static async Task<int> CalculerValeur (int id, int delai)
{

await Task.Delay(delai);

return id * 10;

}
static async Task Main()
{
Task<int> tl1 = CalculerValeur(l, 3000);
Task<int> t2 = CalculerValeur (2, 5000);
Task<int> t3 = CalculerValeur (3, 2000);
await Task.WhenAll (tl, t2, t3);
int resultatl = tl.Result;
int resultat2 = t2.Result;
int resultat3 = t3.Result;
Console.WriteLine ($"Résultats : {resultatl}, {resultat2}, {resultat3}");
}

/54

enAll Avec résultat

Explicati

@ Le programme précédent commence par lancer les taches en paralléle.

@ t1 retourne 10 apres 3 secondes.

@ t2 retourne 20 apres 5 secondes.

@ t3 retourne 30 apres 2 secondes.

@ await Task.WhenAll (tl, t2, t3) :le programme fait une pause ici et
attend que les trois chronométres soient arrivés a zéro.

@ |l récupéres les résultats.

@ Le programme aura duré 5 secondes au total.

H & H: Research and Training 22/54

Avec résultat

Schématisation

tl: | 3s |

t2: | 5s |
t3: |-———-25-———|

H & H: Research and Training 23/54

WhenAll Avec résultat

WhenAll retourne directement un T[]

namespace ProjetTask

{
class Program
{
static async Task<int> CalculerValeur (int id, int delai)
{
await Task.Delay (delai);
return id * 10;
}
static async Task Main()
{
int[] res = await Task.WhenAll (
CalculerValeur (1, 3000),
CalculerValeur (2, 5000),
CalculerValeur (3, 2000)
)i
Console.Writeline(string.Join(", ", res));
}
}
}

H & H: Research and Training 24 /54

WhenAny

Exemple : WhenAny (premiére tache terminée)

namespace ProjetTask
{
class Program
{
static async Task<string> RequeteAsync(string nom, int ms)
{
await Task.Delay (ms);
return $"Réponse {nom}";

static async Task Main()

{
Console.WriteLine ("Début") ;
Task<string> a = RequeteAsync("A", 6000);
Task<string> b = RequeteAsync("B", 2000);

Task<string> first = await Task.WhenAny(a, b);
Console.WriteLine (first.Result);

H & H: Research and Training 25/54

Remarques

@ WhenAny retourne la premiére tache terminée

@ Les autres continuent a s’exécuter

H & H: Research and Training 26/54

Parallélisme Run

Remarques

@ async/await sert a ne pas bloguer pendant I'attente.

@ Task.Run sert a déplacer du calcul sur un autre thread (parallélisme).

H & H: Research and Training 27 /54

Parallélisme Run

Remarques
@ async/await sert a ne pas bloguer pendant I'attente.

@ Task.Run sert a déplacer du calcul sur un autre thread (parallélisme).

Pour simplifier

@ async/await = I/O-bound

@ Task.Run = CPU-bound.

H & H: Research and Training 27 /54

Parallélisme Run

Remarques
@ async/await sert a ne pas bloguer pendant I'attente.

@ Task.Run sert a déplacer du calcul sur un autre thread (parallélisme).

Pour simplifier

@ async/await = I/O-bound

@ Task.Run = CPU-bound.

Ne pas utiliser Task.Run pour des appels réseau J

H & H: Research and Training 27 /54

Parallélisme

Exemple

static async Task Main()

{

Console.WriteLine ("Début") ;
Task tl = Task.Run(() =>
{
Console.WriteLine ("Tdche en cours d'exécution");
D
Console.WriteLine ("Fin");

Parallélisme

Exemple

static async Task Main()
{
Console.WriteLine ("Début") ;
Task tl = Task.Run(() =>
{
Console.WritelLine ("Tdche en cours d'exécution");
D
Console.WriteLine ("Fin");

Résultat : le thread principal continue sans attendre la fin de la tache.

Début
Fin
Tache en cours d'exécution

Parallélisme

Exemple

static async Task Main()
{
Console.WriteLine ("Début") ;
Task tl = Task.Run(() =>
{
Console.WritelLine ("Tdche en cours d'exécution");
D
Console.WriteLine ("Fin");

Résultat : le thread principal continue sans attendre la fin de la tache.

Début
Fin
Tache en cours d'exécution

28 /54

Parallélisme Wait

Pour attendre la fin de la tache avant de poursuivre

static async Task Main()

{
Console.WriteLine ("Début") ;
Task tl = Task.Run(() =>
{
Console.WriteLine ("TAche en cours d'exécution");
b
tl.Wait();
Console.WriteLine ("Fin");
}

H & H: Research and Training 29/54

Parallélisme Wait

Pour attendre la fin de la tache avant de poursuivre

static async Task Main()
{
Console.WriteLine ("Début") ;
Task tl = Task.Run(() =>
{
Console.WriteLine ("TAche en cours d'exécution");
b
tl.Wait();
Console.WriteLine ("Fin");

Résultat

Début
Tiache en cours d'exécution
Fin

H & H: Research and Training 29/54

Parallélisme Wait

Remarque

Wait est bloquante et peut provoquer un deadlock.

H & H: Research and Training 30/54

Parallélisme Wait

Remarque

Wait est bloquante et peut provoquer un deadlock.

Deadlock

@ Une situation ou deux (ou plusieurs) entités s’attendent mutuellement de fagon circulaire,
si bien que plus aucune ne peut progresser.

@ Chacun attend que l'autre libére une ressource, qui ne sera jamais libérée.

H & H: Research and Training 30/54

Parallélisme Wait

Remarque

Wait est bloquante et peut provoquer un deadlock.

Deadlock

@ Une situation ou deux (ou plusieurs) entités s’attendent mutuellement de fagon circulaire,
si bien que plus aucune ne peut progresser.

@ Chacun attend que l'autre libére une ressource, qui ne sera jamais libérée.

Contexte typique

@ Application Ul (WPF / WinForms)

@ ASP.NET classique (pas Core)

H & H: Research and Training 30/54

Parallélisme Wait

Solution : utiliser await

static async Task Main()

{
Console.WriteLine ("Début") ;
Task tl = Task.Run(() =>
{
Console.WriteLine ("TAche en cours d'exécution");
b
await tl1;
Console.WriteLine ("Fin");
}

H & H: Research and Training 31/54

Parallélisme Wait

Solution : utiliser await

static async Task Main()
{

Console.WriteLine ("Début") ;
Task tl = Task.Run(() =>

{

Console.WriteLine ("TAche en cours d'exécution");

|
await tl1;
Console.WriteLine ("Fin");

Résultat

Début
Tiache en cours d'exécution
Fin

H & H: Research and Training 31/54

Probléme : rigidité des interfaces

@ On a une interface asynchrone avec une méthode retournant Task<T>.
@ Limplémentation possede déja la donnée (Cache, calcul simple, Mock).

@ Dilemme : Comment retourner une valeur immédiate sans casser la signature async ?

H & H: Research and Training 32/54

Probléme : rigidité des interfaces

@ On a une interface asynchrone avec une méthode retournant Task<T>.
@ Limplémentation possede déja la donnée (Cache, calcul simple, Mock).

@ Dilemme : Comment retourner une valeur immédiate sans casser la signature async ?

Exemple
public interface ICalculService

{

Task<int> CalculerAsync(int x);

H & H: Research and Training 32/54

Solution : Task .FromRes

Task.FromResult<T> crée une tache qui est déja terminée avec le résultat fourni.

@ Retourner une valeur au format Task<T> sans création de thread supplémentaire ni

d’asynchronisme réel
@ Adaptation de signature (compatibilité API) : pas une mise en async.

@ Exécution purement synchrone.

H & H: Research and Training 33/54

Exemple

public class CalculService : ICalculService

{
public Task<int> CalculerAsync (int x)
{
return Task.FromResult (x * Xx);
}

H & H: Research and Training 34 /54

Exemple

public class CalculService : ICalculService

{
public Task<int> CalculerAsync (int x)
{
return Task.FromResult (x * Xx);
}
}

Explication

@ Pas besoin de async/await sile résultat est instantané.

@ Moins de surcolit gu’'une machine d’état async.

H & H: Research and Training 34 /54

FromResult VS async VS Task.Run

Approche Codt Thread Quand I'utiliser ?
Task.FromResult | Faible Aucun Valeur immédiate / cache / mocks
async Task<T> Moyen Aucun I/O async réel (. . .Async)
Task.Run Elevé | Thread pool | CPU-bound (calcul lourd)

H & H: Research and Training 35/54

Annulation avec ¢

Pourquoi annuler ?

@ Lutilisateur change d’'avis (Ul), timeout métier, arrét serveur.

@ Bonne pratique : proposer un CancellationToken sur les méthodes longues.

H & H: Research and Training 36/54

Annulation avec Can

Exemple : annulation

namespace ProjetTask
{
class Program
{
static async Task TravailAnnulableAsync(CancellationToken ct)
{
for (int i = 1; i <= 10; i++)
{
ct.ThrowIfCancellationRequested();
await Task.Delay (300, ct);
Console.WriteLine ($"étape {i}");

}

}
static async Task Main()

{

using var cts = new CancellationTokenSource();
cts.CancelAfter (1000);

try
{
await TravailAnnulableAsync (cts.Token);

}
catch (OperationCanceledException)
{
Console.WritelLine ("Annulé");
}

/54

Progression et reporting

Reporter la progression

@ Les taches longues peuvent notifier un IProgress<T> (Ul friendly).

@ Progress<T> poste souvent sur le contexte de synchronisation (Ul).

H & H: Research and Training 38/54

Progression et reporting

Exemple : IProgress<int>

namespace ProjetTask

{

class Program

{

static async Task TravailAvecProgressAsync (IProgress<int> progress)
{
for (int p = 0; p <= 100; p += 20)
{
await Task.Delay(200);
progress?.Report (p) ;

}

static async Task Main()

{
var progress = new Progress<int>(p => Console.WriteLine ($"{p}%"));
await TravailAvecProgressAsync (progress) ;

}

39/54

Gestion des exceptions

Gestion des exceptions avec async/await

Contrairement aux Threads classiques, I'exception est capturée naturellement par le await
@ Lexception est encapsulée dans la Task.

@ Elle est relancée lors de I'appel a await, permettant 'usage d’'un bloc t ry-catch
standard.

H & H: Research and Training 40/54

Gestion des excep!

await déballe I'exception de la Task

namespace ProjetTask

{

class Program

{
static async Task MethodeRisqueeAsync ()
{
Console.WriteLine ("Avant exécution");
throw new InvalidOperationException();
}
static async Task Main()
{
try
{
await MethodeRisqueeAsync();
}
catch (InvalidOperationException ex)
{
Console.WriteLine ($"Exception capturée : {ex.Messagel}");
}
}
}

41/54

await déballe I'exception de la Task

namespace ProjetTask
{

class Program

{

static async Task MethodeRisqueeAsync ()

{
Console.WriteLine ("Avant exécution");
throw new InvalidOperationException();

}

static async Task Main()

{
try
{

await MethodeRisqueeAsync();
}
catch (InvalidOperationException ex)
{
Console.WriteLine ($"Exception capturée : {ex.Messagel}");

}

}

}
}
Résultat

Avant exécution
Exception capturée : Operation is not valid due to the current state of the object.

41/54

Cycle de vie d’'une Task

Cycle ie d'une Task

Une Task représente une opération asynchrone qui évolue a travers différents états.
@ Created / WaitingForActivation : Task instanciée mais n’a pas encore débuté.
@ Running : 'opération est en cours d’exécution.

@ Final States :

@ RanToCompletion : Succes total.
@ Faulted : Echec via une exception non gérée.

@ Canceled : Annulation via CancellationToken.

H & H: Research and Training 42 /54

Optimisation : ValueTask<T>

Pour les scénarios haute performance ou le résultat est souvent déja disponible.

@ Probléme : Task<T> est un objet de classe (alloué sur le tas/heap), ce qui crée une
pression sur le Garbage Collector (GC).

@ Solution : ValueTask<T> est une structure (allouée sur la pile/stack).

H & H: Research and Training 43 /54

Bonnes pratiques (synthése)

Bonnes pratiques essentielles

@ Préférer les APl asynchrones natives : ReadAsync, GetAsync, etc.

@ Eviter .Result et .Wait () = risques de blocage/deadlock.

@ await : libere le thread pendant I'attente (1/O) — le thread peut faire autre chose.

@ .Wait () / .Result :bloque le thread jusqu’a la fin — on revient a du synchrone.

@ Propager 'asynchronisme : async « remonte » dans la pile d’appels.
@ Nutiliser Task . Run que pour du CPU-bound.
@ Signature : Task/Task<T> (éviter async void sauf événements).

H & H: Research and Training 44 /54

Bonnes pratiques (synthése)

Pourquoi await est recommandé ?

@ Ne bloque pas de thread = meilleure réactivité / scalabilité
@ Evite les deadlocks en contexte Ul / ASP.NET classique

@ S’integre proprement avec CancellationToken et IProgress

H & H: Research and Training 45 /54

Bonnes pratiques (synthése)

C#

Recommandation selon le contexte

Contexte Bonne pratique

Console async / await
Ul (WPF/WinForms) | await obligatoire
ASP.NET Core await partout

Bibliothéque await + ConfigureAwait(false)

H & H: Research and Training 46 /54

Bonnes pratiques (synthése)

Piége : async void

async void ChargerAsync() { ... }

H & H: Research and Training 47 /54

Bonnes pratiques (synthése)

Piége : async void

async void ChargerAsync() { ... }
Regle d’or
async Task ChargerAsync() { ... }

H & H: Research and Training 47 /54

Bonnes pratiques (synthése)

Piége : async void

async void ChargerAsync() { ... }
Regle d’or
async Task ChargerAsync() { ... }

Pourquoi ?

@ Exceptions non capturables

@ Rupture de la chaine async

H & H: Research and Training 47/ 54

Bonnes pratiques (synthése)

Piége : Task.Run mal utilisé

await Task.Run(() => httpClient.GetAsync(url));

H & H: Research and Training 48 /54

Bonnes pratiques (synthése)

Piége : Task.Run mal utilisé

await Task.Run(() => httpClient.GetAsync(url));

Reégle d’or

await httpClient.GetAsync (url);

H & H: Research and Training 48 /54

Bonnes pratiques (synthése)

Piége : Task.Run mal utilisé

await Task.Run(() => httpClient.GetAsync(url));

Reégle d’or

await httpClient.GetAsync (url);

Pourquoi ?

@ Task.Run pour les calculs, pas pour les I/O

@ Gaspillage des threads

H & H: Research and Training 48 /54

Bonnes pratiques (sy

hese)

Piége : le code suivant ne capture jamais I’exception

namespace ProjetTask
{
class Program
{
static void Main(string[] args)
{
try
{
TraiterAsync();
}
catch (Exception ex)
{

Console.WriteLine (ex.Message) ;

static async Task TraiterAsync()
{
await Task.Delay (1000);
throw new Exception ("Erreur !");

H & H: Research and Training 49 /54

Bonnes pratiques (sy

Il faut le remplacer par

namespace ProjetTask
{
class Program
{
static async Task Main(string[] args)
{
try
{
await TraiterAsync();
}
catch (Exception ex)
{

Console.WriteLine (ex.Message) ;

static async Task TraiterAsync()
{
await Task.Delay (1000);
throw new Exception ("Erreur !");

H & H: Research and Training 50/ 54

Exercices

Exercice 1 (bases)

0 Ecrire AttendreEtAfficherAsync (int ms) quifaitun Task.Delay (ms)
puis affiche OX.

@ Ecrire calculerCarreAsync (int x) qui attend 300ms puis retourne 2.

H & H: Research and Training 51/54

Exercices

Exercice 2 (composition)

@ Lancer 3 appels calculerCarreasync et afficher les résultats avec Whenall.

@ Ecrire PremierResultatAsync () quilance deux tches et affiche la premiére
terminée via WhenAny.

H & H: Research and Training 52 /54

Exercices

C#

Correction

static async Task<int> CalculerCarreAsync (int x)
{

// simulation d'un calcul

await Task.Delay (300);

return x * x;

static async Task Exercice2_ Composition()
{
// lancer les taches en paralléle (elles partent sur le ThreadPool)
Task<int> tl1l = CalculerCarreAsync(5);
Task<int> t2 = CalculerCarreAsync(10);
Task<int> t3 = CalculerCarreAsync(8);

// attendre que toutes soient terminees
int[] resultats = await Task.WhenAll (tl, t2, t3);

// affichage
Console.WriteLine ($"Resultats : {string.Join(", ", resultats)}");

H & H: Research and Training 53 /54

Exercices

Exercice 3 (annulation et erreurs)

@ Ajouter un cancellationToken & un traitement en boucle et annuler aprés 1
seconde.

@ Simuler une exception dans une tache, la capturer proprement autour du await.

H & H: Research and Training 54 /54

Exercices

Correction

static async Task Exercice3_ExceptionsEtAnnulation()

{
using var cts = new CancellationTokenSource();
cts.CancelAfter (1000); // annulation automatique aprés 1s

try
{
await TraitementRisqueAsync (cts.Token);
}
catch (OperationCanceledException)
{
// capture 1l'annulation
Console.WriteLine ("Le traitement a depasse le delai imparti.");

}
catch (Exception ex)
{
// Capture une erreur simulée
Console.WriteLine ($"Une erreur est survenue : {ex.Messagel}");
}

static async Task TraitementRisqueAsync (CancellationToken ct)

{

for (int i = 0; i < 10; i++)

{
ct.ThrowIfCancellationRequested(); // vérifie 1l'annulation
await Task.Delay (300, ct); // l'attente est aussi annulable
if (i == 2) throw new Exception("échec critique du calcul !"); // simulation erreur
Console.WriteLine ($"Etape {i} terminée");
}

55/54

	Introduction
	Task : async/await
	Sans méthode
	Avec méthode

	Task<T>
	WhenAll
	Sans résultat
	Avec résultat

	WhenAny
	Parallélisme
	Run
	Wait

	FromResult
	Annulation avec CancellationToken
	Progression et reporting
	Gestion des exceptions
	Cycle de vie d'une Task
	ValueTask<T>
	Bonnes pratiques (synthèse)
	Exercices

