
ASP.NET Core – Minimal API

Achref El Mouelhi

Docteur de l’université d’Aix-Marseille
Chercheur en programmation par contrainte (IA)

Ingénieur en génie logiciel

elmouelhi.achref@gmail.com

13 février 2026

H & H: Research and Training 1 / 40



Plan

1 Introduction

2 Création du projet

3 Structure de base : Program.cs

4 Modèles + DTO

5 Service (Business) + DI

H & H: Research and Training 2 / 40



Plan

6 Endpoints Minimal API : GET / POST

7 Validation : DataAnnotations + erreurs

8 Middleware CORS

9 Circular references
[JsonIgnore]
IgnoreCycles

10 AutoMapper

H & H: Research and Training 3 / 40



© Achref EL MOUELHI ©

Introduction

ASP.NET Core

Minimal API

Introduites avec .NET 6 : style “endpoint-first”.

Alternative aux Controllers Web API pour des APIs simples / microservices.

Moins de classes, moins de “boilerplate” : endpoints dans Program.cs.

H & H: Research and Training 4 / 40



© Achref EL MOUELHI ©

Création du projet

ASP.NET Core

Création d’un projet Web API avec Visual Studio Community 2026

Allez dans Fichier > Nouveau > Projet

Dans la zone de recherche, saisissez web api

Sélectionner API Web ASP.NET Core

Remplir le champs Nom par CoursMinimalApi

Décocher Utiliser des contrôleurs

Validez et attendre la fin de création du projet

H & H: Research and Training 5 / 40



© Achref EL MOUELHI ©

Création du projet

ASP.NET Core

Création du projet avec une commande

dotnet new web -n CoursMinimalApi cd CoursMinimalApi

H & H: Research and Training 6 / 40



© Achref EL MOUELHI ©

Création du projet

ASP.NET Core

Utiliser NuGet pour Télécharger les dépendances

Faire clic droit sur Dépendances dans l’Explorateur de solution

Choisir Gérer les packages NuGet

Aller dans l’onglet Parcourir et chercher Scalar.AspNetCore

Choisir la dernière version stable et installer

Accepter, attendre la fin de l’installation

H & H: Research and Training 7 / 40



© Achref EL MOUELHI ©

Structure de base : Program.cs

ASP.NET Core
Structure minimale d’une Minimal API si vous utilisez Scalar

using Scalar.AspNetCore;

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddOpenApi();

var app = builder.Build();

if (app.Environment.IsDevelopment())
{

app.MapOpenApi();
app.MapScalarApiReference("/docs");

}

app.UseHttpsRedirection();

app.Run();

H & H: Research and Training 8 / 40



© Achref EL MOUELHI ©

Modèles + DTO

ASP.NET Core

Rappel : Entité vs DTO

Entité : modèle persistant (EF Core) : structure DB.

DTO : modèle d’échange API : ce qu’on expose au client.

En Minimal API, on conserve la même bonne pratique : ne pas
exposer directement l’entité.

H & H: Research and Training 9 / 40



© Achref EL MOUELHI ©

Modèles + DTO

ASP.NET Core
Exemple : Entités (Models)

namespace CoursMinimalApi.Models;

public class Personne
{

public int Num { get; set; }
public string? Nom { get; set; }
public string? Prenom { get; set; }
public int Age { get; set; }
public ICollection<Adresse> Adresses { get; set; } = [];

}

public class Adresse
{

public int Id { get; set; }
public string? Rue { get; set; }
public string? Ville { get; set; }
public string? CodePostal { get; set; }

public ICollection<Personne> Personnes { get; set; } = [];

}

H & H: Research and Training 10 / 40



© Achref EL MOUELHI ©

Modèles + DTO

ASP.NET Core

DTO (Contracts)

namespace CoursWebApi.Contracts;

public record PersonneDto(
int Num,
string? Nom,
string? Prenom,
int Age

);

public record CreatePersonneDto
{

public string Nom { get; init; }
public string Prenom { get; init; }
public int Age { get; init; }

}

H & H: Research and Training 11 / 40



© Achref EL MOUELHI ©

Service (Business) + DI

ASP.NET Core

Service + Injection de dépendances

Même principe qu’avec les controllers : on sort la logique métier
hors des endpoints.

On injecte le service directement dans le handler Minimal API.

H & H: Research and Training 12 / 40



© Achref EL MOUELHI ©

Service (Business) + DI

ASP.NET Core

Interface

namespace CoursMinimalApi.Interfaces;

public interface IPersonneService
{

Task<List<Personne>> GetAllAsync();
Task<Personne?> GetByIdAsync(int id);
Task<Personne> CreateAsync(Personne entity);

}

H & H: Research and Training 13 / 40



© Achref EL MOUELHI ©

Service (Business) + DI

ASP.NET Core

Contenu de PersonneService.cs

namespace CoursMinimalApi.Services;

public class PersonneService : IPersonneService
{

private readonly List<Personne> _data = [
new Personne { Num = 1, Nom = "Wick", Prenom = "John", Age = 45 },
new Personne { Num = 2, Nom = "Dalton", Prenom = "Jack", Age = 40 }

];

public Task<List<Personne>> GetAllAsync()
=> Task.FromResult(_data);

public Task<Personne?> GetByIdAsync(int id)
=> Task.FromResult(_data.FirstOrDefault(p => p.Num == id));

public Task<Personne> CreateAsync(Personne entity)
{

var nextId = _data.Count == 0 ? 1 : _data.Max(p => p.Num) + 1;
entity.Num = nextId;
_data.Add(entity);
return Task.FromResult(entity);

}
}

H & H: Research and Training 14 / 40



© Achref EL MOUELHI ©

Service (Business) + DI

ASP.NET Core

Déclarer le service dans Program.cs

builder.Services.AddScoped<IPersonneService, PersonneService>();

H & H: Research and Training 15 / 40



© Achref EL MOUELHI ©

Endpoints Minimal API : GET / POST

ASP.NET Core

GET : /api/personnes (à ajouter dans Program.cs)

app.MapGet("/api/personnes", async (IPersonneService service) =>
{

var personnes = await service.GetAllAsync();

var dto = personnes.Select(p => new PersonneDto(
p.Num, p.Nom, p.Prenom, p.Age

));

return Results.Ok(dto);
});

H & H: Research and Training 16 / 40



© Achref EL MOUELHI ©

Endpoints Minimal API : GET / POST

ASP.NET Core

GET : /api/personnes/id

app.MapGet("/api/personnes/{id:int}", async (int id, IPersonneService
service) =>

{
var p = await service.GetByIdAsync(id);
if (p is null) return Results.NotFound();

var dto = new PersonneDto(p.Num, p.Nom, p.Prenom, p.Age);
return Results.Ok(dto);

});

H & H: Research and Training 17 / 40



© Achref EL MOUELHI ©

Endpoints Minimal API : GET / POST

ASP.NET Core

POST : /api/personnes

app.MapPost("/api/personnes", async (CreatePersonneDto input,
IPersonneService service) =>

{
var entity = new Personne
{

Nom = input.Nom,
Prenom = input.Prenom,
Age = input.Age

};

var created = await service.CreateAsync(entity);

var dto = new PersonneDto(created.Num, created.Nom, created.Prenom,
created.Age);

return Results.Created($"/api/personnes/{dto.Num}", dto);
});

H & H: Research and Training 18 / 40



© Achref EL MOUELHI ©

Endpoints Minimal API : GET / POST

ASP.NET Core
Une deuxième solution

app.MapPost("/api/personnes", async (IPersonneService _service, [FromBody] PersonneCreateDto
dto) =>

{
var entity = new Personne
{

Nom = input.Nom,
Prenom = input.Prenom,
Age = input.Age

};

var created = await service.CreateAsync(entity);
var dto = new PersonneDto(created.Num, created.Nom, created.Prenom, created.Age);
return Results.CreatedAtRoute("GetById", new { id = entity.Num }, _mapper.Map<

PersonneResponseDto>(entity));
});

Sans oublier d’associer un nom à GET : /api/personnes/id

app.MapGet("/api/personnes/{id:int}", async (int id, IPersonneService service) =>
{

var p = await service.GetByIdAsync(id);
if (p is null) return Results.NotFound();

var dto = new PersonneDto(p.Num, p.Nom, p.Prenom, p.Age);
return Results.Ok(dto);

}).WithName("GetById");

H & H: Research and Training 19 / 40



© Achref EL MOUELHI ©

Endpoints Minimal API : GET / POST

ASP.NET Core
Une deuxième solution

app.MapPost("/api/personnes", async (IPersonneService _service, [FromBody] PersonneCreateDto
dto) =>

{
var entity = new Personne
{

Nom = input.Nom,
Prenom = input.Prenom,
Age = input.Age

};

var created = await service.CreateAsync(entity);
var dto = new PersonneDto(created.Num, created.Nom, created.Prenom, created.Age);
return Results.CreatedAtRoute("GetById", new { id = entity.Num }, _mapper.Map<

PersonneResponseDto>(entity));
});

Sans oublier d’associer un nom à GET : /api/personnes/id

app.MapGet("/api/personnes/{id:int}", async (int id, IPersonneService service) =>
{

var p = await service.GetByIdAsync(id);
if (p is null) return Results.NotFound();

var dto = new PersonneDto(p.Num, p.Nom, p.Prenom, p.Age);
return Results.Ok(dto);

}).WithName("GetById");

H & H: Research and Training 19 / 40



© Achref EL MOUELHI ©

Validation : DataAnnotations + erreurs

ASP.NET Core

Validation en Minimal API

Contrairement à [ApiController], la validation n’est pas automatique par
défaut.

On peut utiliser DataAnnotations et valider explicitement.

Retour d’erreurs : Results.ValidationProblem(...).

H & H: Research and Training 20 / 40



© Achref EL MOUELHI ©

Validation : DataAnnotations + erreurs

ASP.NET Core

DTO avec DataAnnotations

using System.ComponentModel.DataAnnotations;

namespace CoursMinimalApi.Contracts;

public record CreatePersonneDto
{

[Required]
public string Nom { get; init; } = null!;

[MinLength(3), MaxLength(30)]
public string Prenom { get; init; } = null!;

[Range(0, 150)]
public int Age { get; init; }

}

H & H: Research and Training 21 / 40



© Achref EL MOUELHI ©

Validation : DataAnnotations + erreurs

ASP.NET Core

Validation explicite dans l’endpoint POST

using System.ComponentModel.DataAnnotations;

app.MapPost("/api/personnes", async (CreatePersonneDto input, IPersonneService service) =>
{

var ctx = new ValidationContext(input);
var results = new List<ValidationResult>();

if (!Validator.TryValidateObject(input, ctx, results, validateAllProperties: true))
{

var errors = results
.GroupBy(r => r.MemberNames.FirstOrDefault() ?? "")
.ToDictionary(

g => g.Key,
g => g.Select(r => r.ErrorMessage ?? "Erreur").ToArray()

);

return Results.ValidationProblem(errors);
}

var entity = new Personne { Nom = input.Nom, Prenom = input.Prenom, Age = input.Age };
var created = await service.CreateAsync(entity);

var dto = new PersonneDto(created.Num, created.Nom, created.Prenom, created.Age);
return Results.Created($"/api/personnes/{dto.Num}", dto);

});

H & H: Research and Training 22 / 40



© Achref EL MOUELHI ©

Middleware CORS

ASP.NET Core

Exercice

Depuis un projet Angular, consommer l’endpoint GET /api/personnes.

H & H: Research and Training 23 / 40



© Achref EL MOUELHI ©

Middleware CORS

ASP.NET Core

Activer CORS dans Program.cs

builder.Services.AddCors(options =>
{

options.AddDefaultPolicy(policy =>
policy.WithOrigins("http://localhost:4200")

.AllowAnyHeader()

.AllowAnyMethod()

.AllowCredentials()
);

});

var app = builder.Build();

app.UseHttpsRedirection();

app.UseCors();

H & H: Research and Training 24 / 40



© Achref EL MOUELHI ©

Circular references

ASP.NET Core

Dans Models, créons une deuxième classe POCO Adresse

namespace CoursWebApi.Models;

public class Adresse
{

public int Id { get; set; }
public string? Rue { get; set; }
public string? Ville { get; set; }
public string? CodePostal { get; set; }

public ICollection<Personne> Personnes { get; set; } = [];
}

H & H: Research and Training 25 / 40



© Achref EL MOUELHI ©

Circular references

ASP.NET Core

Modifions la classe Personne pour que l’association avec Adresse soit bidirectionnelle

namespace CoursWebApi.Models

public class Personne
{

public int Num { get; set; }
public string? Nom { get; set; }
public string? Prenom { get; set; }
public int Age { get; set; }

public ICollection<Adresse> Adresses { get; set; } = [];
}

H & H: Research and Training 26 / 40



© Achref EL MOUELHI ©

Circular references

ASP.NET Core

Modifions également le constructeur de PersonneService

public class PersonneService : IPersonneService
{

private readonly List<Personne> _personnes;

public PersonneService()
{

Adresse adresse = new() { Rue = "paradis", Ville = "Marseille", CodePostal = "13006" };
var personne1 = new Personne { Num = 1, Nom = "Wick", Prenom = "John", Age = 45,

Adresses = { adresse } };
var personne2 = new Personne { Num = 2, Nom = "Dalton", Prenom = "Jack", Age = 40 };
var personne3 = new Personne { Num = 3, Nom = "Maggio", Prenom = "Sophie", Age = 20 };
adresse.Personnes.Add(personne1);
_personnes = [personne1, personne2, personne3];

}

// + le code précédent

}

H & H: Research and Training 27 / 40



© Achref EL MOUELHI ©

Circular references

ASP.NET Core

Modifions également PersonneDto

using CoursWebApi.Models;

namespace CoursWebApi.Contracts;

// DTO pour lecture
public record PersonneDto(int Id, string? Nom, string? Prenom, int Age, ICollection<Adresse>

Adresses);

H & H: Research and Training 28 / 40



© Achref EL MOUELHI ©

Circular references

ASP.NET Core

Mettons à jour les actions de PersonnesController utilisant PersonneDto

[HttpGet]
public async Task<ActionResult<IEnumerable<PersonneDto>>> GetAll()
{

var list = await _service.GetAllAsync();
var dto = list.Select(p => new PersonneDto(p.Num, p.Nom, p.Prenom, p.Age, p.Adresses));
return Ok(dto);

}

Relancez le projet et allez à https://localhost:<port>/api/personnes et vérifiez l’erreur suivante

System.Text.Json.JsonException: A possible object cycle was detected.

H & H: Research and Training 29 / 40

https://localhost:<port>/api/personnes


© Achref EL MOUELHI ©

Circular references

ASP.NET Core

Mettons à jour les actions de PersonnesController utilisant PersonneDto

[HttpGet]
public async Task<ActionResult<IEnumerable<PersonneDto>>> GetAll()
{

var list = await _service.GetAllAsync();
var dto = list.Select(p => new PersonneDto(p.Num, p.Nom, p.Prenom, p.Age, p.Adresses));
return Ok(dto);

}

Relancez le projet et allez à https://localhost:<port>/api/personnes et vérifiez l’erreur suivante

System.Text.Json.JsonException: A possible object cycle was detected.

H & H: Research and Training 29 / 40

https://localhost:<port>/api/personnes


© Achref EL MOUELHI ©

Circular references

ASP.NET Core

Remarque

En essayant de consulter la liste des personnes (avec leurs adresses respectives), on
a une boucle infinie (circular reference) car l’association est désormais
bidirectionnelle.

Cycles : 2 stratégies

Stratégie Avantage Limite

[JsonIgnore] contrôle fin, explicite perte d’info / couplage sérialisation
IgnoreCycles rapide, global moins explicite, peut masquer un design

H & H: Research and Training 30 / 40



© Achref EL MOUELHI ©

Circular references

ASP.NET Core

Remarque

En essayant de consulter la liste des personnes (avec leurs adresses respectives), on
a une boucle infinie (circular reference) car l’association est désormais
bidirectionnelle.

Cycles : 2 stratégies

Stratégie Avantage Limite

[JsonIgnore] contrôle fin, explicite perte d’info / couplage sérialisation
IgnoreCycles rapide, global moins explicite, peut masquer un design

H & H: Research and Training 30 / 40



© Achref EL MOUELHI ©

Circular references [JsonIgnore]

ASP.NET Core

Dans Adresse, décorons Personnes avec l’attribut [JsonIgnore] pour éviter sa
sérialisation avec les adresses

using System.Text.Json.Serialization;

namespace CoursWebApi.Models;

public class Adresse
{

public int Id { get; set; }
public string? Rue { get; set; }
public string? Ville { get; set; }
public string? CodePostal { get; set; }

[JsonIgnore]
public ICollection<Personne> Personnes { get; set; } = [];

}

H & H: Research and Training 31 / 40



© Achref EL MOUELHI ©

Circular references [JsonIgnore]

Relancez le projet et allez à https://localhost:7067/api/personnes et vérifiez le résultat suivant

[
{
"num": 1,
"nom": "Wick",
"prenom": "John",
"age": 45,
"adresses": [

{
"id": 0,
"rue": "paradis",
"ville": "Marseille",
"codePostal": "13006"

}
]

},
{
"num": 2,
"nom": "Dalton",
"prenom": "Jack",
"age": 40,
"adresses": []

},
{
"num": 3,
"nom": "Maggio",
"prenom": "Sophie",
"age": 20,
"adresses": []

}
]

H & H: Research and Training 32 / 40

https://localhost:7067/api/personnes


© Achref EL MOUELHI ©

Circular references IgnoreCycles

ASP.NET Core

Deuxième solution : configurer globalement Program.cs

// Pour casser les références circulaires
builder.Services.ConfigureHttpJsonOptions(options =>
{

options.SerializerOptions.ReferenceHandler = ReferenceHandler.
IgnoreCycles;

});

H & H: Research and Training 33 / 40



© Achref EL MOUELHI ©

Circular references IgnoreCycles

Relancez le projet et allez à https://localhost:7067/api/personnes et vérifiez le résultat suivant

[
{
"num": 1,
"nom": "Wick",
"prenom": "John",
"age": 45,
"adresses": [

{
"id": 0,
"rue": "paradis",
"ville": "Marseille",
"codePostal": "13006",
"personnes": [

{
"num": 1,
"nom": "Wick",
"prenom": "John",
"age": 45,
"adresses": null

}
]

}
]

},
{
"num": 2,
"nom": "Dalton",
"prenom": "Jack",
"age": 40,
"adresses": []

},
...

]

H & H: Research and Training 34 / 40

https://localhost:7067/api/personnes


© Achref EL MOUELHI ©

AutoMapper

ASP.NET Core

Le problème : Mapping manuel

Le mapping manuel (DTO ↔ Entité) devient répétitif et difficile à maintenir.

Pourquoi utiliser AutoMapper?

Réduction du code boilerplate.

Maintenance facilitée : règles centralisées.

Évolutivité : ajout de champs plus simple.

H & H: Research and Training 35 / 40



© Achref EL MOUELHI ©

AutoMapper

ASP.NET Core

Le problème : Mapping manuel

Le mapping manuel (DTO ↔ Entité) devient répétitif et difficile à maintenir.

Pourquoi utiliser AutoMapper ?

Réduction du code boilerplate.

Maintenance facilitée : règles centralisées.

Évolutivité : ajout de champs plus simple.

H & H: Research and Training 35 / 40



© Achref EL MOUELHI ©

AutoMapper

ASP.NET Core

Installation (CLI)

dotnet add package AutoMapper

H & H: Research and Training 36 / 40



© Achref EL MOUELHI ©

AutoMapper

ASP.NET Core

Définissons une classe PersonneProfile qui hérite de Profile

using AutoMapper;
using CoursWebApi.Contracts;
using CoursWebApi.Models;

namespace ProjetWebApiEf.Mappers;

public class PersonneProfile: Profile
{

public PersonneProfile()
{

// Source => Destination
CreateMap<PersonneCreateDto, Personne>();

}
}

H & H: Research and Training 37 / 40



© Achref EL MOUELHI ©

AutoMapper

ASP.NET Core

Et si les propriétés ont un nom différent (Id et Num par exemple)

public class PersonneProfile: Profile
{

public PersonneProfile()
{

// Source => Destination
CreateMap<PersonneCreateDto, Personne>();
CreateMap<PersonneUpdateDto, Personne>()

.ForMember(
dest => dest.Num,
opt => opt.MapFrom(src => src.Id)

);
CreateMap<Personne, PersonneResponseDto>()

.ForMember(
dest=> dest.Id,
opt => opt.MapFrom(src => src.Num)

);
}

}

H & H: Research and Training 38 / 40



© Achref EL MOUELHI ©

AutoMapper

ASP.NET Core

Déclarer AutoMapper dans Program.cs

builder.Services.AddAutoMapper(typeof(PersonneProfile));

H & H: Research and Training 39 / 40



© Achref EL MOUELHI ©

AutoMapper

ASP.NET Core

Utiliser AutoMapper dans un endpoint POST

app.MapPost("/api/personnes/am",
async (CreatePersonneDto input, IPersonneService service, IMapper

mapper) =>
{

var entity = mapper.Map<Personne>(input);

var created = await service.CreateAsync(entity);

var dto = mapper.Map<PersonneDto>(created);

return Results.Created($"/api/personnes/{dto.Num}", dto);
});

H & H: Research and Training 40 / 40


	Introduction
	Création du projet
	Structure de base : Program.cs
	Modèles + DTO
	Service (Business) + DI
	Endpoints Minimal API : GET / POST
	Validation : DataAnnotations + erreurs
	Middleware CORS
	Circular references
	[JsonIgnore]
	IgnoreCycles

	AutoMapper

