ASP.NET Core — Minimal API

Achref El Mouelhi

Docteur de l'université d’Aix-Marseille
Chercheur en programmation par contrainte (l1A)
Ingénieur en génie logiciel

elmouelhi.achref@gmail.com

ASP.NET

févri @

H & H: Research and Training 1/40

@ Introduction

e Création du projet

e Structure de base : Program.cs
© Modeles + DTO

e Service (Business) + DI

H & H: Research and Training 2/40

@ Endpoints Minimal APl : GET / POST
@ Validation : DataAnnotations + erreurs
e Middleware CORS

e Circular references
@ [JsonIgnore]
@ IgnoreCycles

@ AutoMapper

H & H: Research and Training 3/40

ASP.NET Core

@ Introduites avec .NET 6 : style “endpoint-first”.

@ Alternative aux Controllers Web API pour des APIs simples / microservices.

@ Moins de classes, moins de “boilerplate” : endpoints dans Program. cs.

H & H: Research and Training 4/40

Création du projet

ASP.NET Core

ation d’'un projet Web API avec Visual Studio Community 2026

Allez dans Fichier > Nouveau > Projet

Dans la zone de recherche, saisissez web api

Sélectionner API Web ASP.NET Core

Remplir le champs Nom par CoursMinimalApi

Décocher Utiliser des contrdleurs

Validez et attendre la fin de création du projet

H & H: Research and Training 5/40

ASP.NET Core

Création du projet avec une commande

dotnet new web -n CoursMinimalApi cd CoursMinimalApi

H & H: Research and Training 6/40

Création du projet

ASP.NET Core

harger les dépendances

@ Faire clic droit sur Dépendances dans 'Explorateur de solution
@ Choisir Gérer les packages NuGet

@ Aller dans l'onglet Parcourir et chercher Scalar.AspNetCore

@ Choisir la derniere version stable et installer

@ Accepter, attendre la fin de l'installation

H & H: Research and Training 7/40

Structure de base : Program.cs

ASP.NET Core

Structure minimale d’une Minimal API si vous utilisez Scalar

using Scalar.AspNetCore;
var builder = WebApplication.CreateBuilder (args);
builder.Services.AddOpenApi () ;
var app = builder.Build();
if (app.Environment.IsDevelopment ())
{
app . MapOpenApi () ;
app .MapScalarApiReference ("/docs") ;

app.UseHttpsRedirection();

app.Run() ;

H & H: Research and Training 8/40

Modéles + DTO

ASP.NET Core

Rappel : Entité vs DTO

@ Entité : modéle persistant (EF Core) : structure DB.
@ DTO : modeéle d’échange API : ce qu’on expose au client.

@ En Minimal API, on conserve la méme bonne pratique : ne pas
exposer directement I’entité.

H & H: Research and Training 9/40

Modeles + DTO

ASP.NET Core

Exemple : Entités (Models)

namespace CoursMinimalApi.Models;

public class Personne
{
public int Num { get; set; }
public string? Nom { get; set; }
public string? Prenom { get; set; }
public int Age { get; set; }
public ICollection<Adresse> Adresses { get; set; } = [];

public class Adresse

{
public int Id { get; set; }
public string? Rue { get; set; }
public string? Ville { get; set; }
public string? CodePostal { get; set; }

public ICollection<Personne> Personnes { get; set; } = [];

H & H: Research and Training 10/40

Modeles + DTO

ASP.NET Core

DTO (Contracts)

namespace CoursWebApi.Contracts;

public record PersonneDto (
int Num,
string? Nom,
string? Prenom,
int Age
);

public record CreatePersonneDto

{
public string Nom { get; init; }
public string Prenom { get; init; }
public int Age { get; init; }

H & H: Research and Training 11/ 40

Service (Business) + DI

ASP.NET Core

Service + Injection de dépendances

@ Méme principe gu’avec les controllers : on sort la logique métier
hors des endpoints.

@ On injecte le service directement dans le handler Minimal API.

H & H: Research and Training 12/40

Service (Business) + DI

ASP.NET Core

Interface

namespace CoursMinimalApi.Interfaces;

public interface IPersonneService

{

Task<List<Personne>> GetAllAsync();
Task<Personne?> GetByIdAsync (int id);
Task<Personne> CreateAsync (Personne entity);

H & H: Research and Training 13/40

Service (Business) + DI

ASP.NET Core

Contenu de PersonneService.cs

namespace CoursMinimalApi.Services;

public class PersonneService

{

private readonly List<Personne> _data
new Personne { Num = 1, Nom
new Personne { Num = 2, Nom

1;

IPersonneService

[

= "Wick", Prenom = "John", Age = 45 },
= "Dalton", Prenom = "Jack", Age =

public Task<List<Personne>> GetAllAsync()
=> Task.FromResult (_data);

public Task<Personne?> GetByIdAsync(int id)

=> Task.FromResult (_data.FirstOrDefault (p => p.Num

id));

public Task<Personne> CreateAsync (Personne entity)

{

var nextId
entity.Num

_data.Count
nextId;

_data.Add (entity) ;
return Task.FromResult (entity);

02?1

_data.Max(p => p.Num) + 1;

40 }

Service (Business) + DI

ASP.NET Core

Déclarer le service dans Program.cs

builder.Services.AddScoped<IPersonneService, PersonneService>();

H & H: Research and Training 15/40

Endpoints Minimal API : GET / POST

ASP.NET Core

GET : /api/personnes (a ajouter dans Program.cs)

app .MapGet ("/api/personnes", async (IPersonneService service) =>
{

var personnes = await service.GetAllAsync();

var dto = personnes.Select (p => new PersonneDto (
p.Num, p.Nom, p.Prenom, p.Age

)) i

return Results.Ok (dto);
1

H & H: Research and Training 16 /40

Endpoints Minimal API : GET / POST

ASP.NET Core

GET : /api/personnes/id

app .MapGet ("/api/personnes/{id:int}", async (int id, IPersonneService
service) =>
{
var p = await service.GetByIdAsync (id);
if (p is null) return Results.NotFound();

var dto = new PersonneDto(p.Num, p.Nom, p.Prenom, p.Age);

return Results.Ok (dto);
i

H & H: Research and Training 17/ 40

Endpoints Minimal API : GET / POST

ASP.NET Core

POST : /api/personnes

app.MapPost ("/api/personnes", async (CreatePersonneDto input,

IPersonneService service) =>

var entity = new Personne

{
Nom = input.Nom,
Prenom = input.Prenom,
Age = input.Age
}i
var created = await service.CreateAsync (entity);
var dto = new PersonneDto (created.Num, created.Nom, created.Prenom,

created.Age);
return Results.Created($"/api/personnes/{dto.Num}", dto);

1)

H & H: Research and Training 18/40

Endpoints Minimal API : GET / POST

ASP.NET Core

Une deuxieme solution

app.MapPost ("/api/personnes", async (IPersonneService _service, [FromBody] PersonneCreateDto
dto) =>
{
var entity = new Personne
{
Nom = input.Nom,
Prenom = input.Prenom,
Age = input.Age
Yi

var created = await service.CreateAsync(entity);

var dto = new PersonneDto (created.Num, created.Nom, created.Prenom, created.Age);

return Results.CreatedAtRoute ("GetById", new { id = entity.Num }, _mapper.Map<
PersonneResponseDto> (entity)) ;

b

Endpoints Minimal API : GET / POST

ASP.NET Core

Une deuxieme solution

app .MapPost ("/api/personnes", async (IPersonneService _service, [FromBody] PersonneCreateDto
dto) =>
{
var entity = new Personne
{
Nom = input.Nom,
Prenom = input.Prenom,
Age = input.Age
Yi

var created = await service.CreateAsync(entity);

var dto = new PersonneDto (created.Num, created.Nom, created.Prenom, created.Age);

return Results.CreatedAtRoute ("GetById", new { id = entity.Num }, _mapper.Map<
PersonneResponseDto> (entity)) ;

b

Sans oublier d’associer un nom a GET : /api/personnes/id

app.MapGet ("/api/personnes/{id:int}", async (int id, IPersonneService service) =>
{

var p = await service.GetByIdAsync(id);

if (p is null) return Results.NotFound();

var dto = new PersonneDto(p.Num, p.Nom, p.Prenom, p.Age);
return Results.Ok (dto);
}) .WithName ("GetById") ;

and Traini

H & H: Reseal

Validation : DataAnnotations + erreurs

ASP.NET Core

Validation en Minimal API

@ Contrairement a [ApiController], la validation n'est pas automatique par
défaut.

@ On peut utiliser DataAnnotations et valider explicitement.

@ Retour d’erreurs : Results.ValidationProblem(...).

H & H: Research and Training 20/ 40

Validation : DataAnnotations + erreurs

ASP.NET Core

DTO avec DataAnnotations

using System.ComponentModel.DataAnnotations;
namespace CoursMinimalApi.Contracts;
public record CreatePersonneDto
{
[Required]

public string Nom { get; init; } = null!;

[MinLength (3), MaxLength (30)]
public string Prenom { get; init; } = null!;

[Range (0, 150)]
public int Age { get; init; }

H & H: Research and Training 21/40

Validation : DataAnnotations + erreurs

ASP.NET Core

Validation explicite dans I’endpoint POST

using System.ComponentModel.DataAnnotations;

app.MapPost ("/api/personnes", async (CreatePersonneDto input, IPersonneService service) =>

{

var ctx = new ValidationContext (input) ;
var results = new List<ValidationResult>();

if (!Validator.TryValidateObject (input, ctx, results, validateAllProperties: true))

{
var errors = results
.GroupBy (r => r.MemberNames.FirstOrDefault () 2?2 "")
.ToDictionary (
g => g.Key,
g => g.Select (r => r.ErrorMessage ?? "Erreur").ToArray ()
)i
return Results.ValidationProblem(errors) ;
}

var entity = new Personne { Nom = input.Nom, Prenom = input.Prenom, Age = input.Age };
var created = await service.CreateAsync(entity);

var dto = new PersonneDto (created.Num, created.Nom, created.Prenom, created.Age);
return Results.Created($"/api/personnes/{dto.Num}", dto);

Middleware CORS

ASP.NET Core

Depuis un projet Angular, consommer I'endpoint GET /api/personnes.

H & H: Research and Training 23/40

Middleware CORS

ASP.NET Core

Activer CORS dans Program.cs

builder.Services.AddCors (options =>
{
options.AddDefaultPolicy (policy =>
policy.WithOrigins ("http://localhost:4200")
.AllowAnyHeader ()
.AllowAnyMethod ()
.AllowCredentials ()
)i
i

var app = builder.Build();
app.UseHttpsRedirection() ;

app.UseCors () ;

H & H: Research and Training 24 /40

Circular references

ASP.NET Core

Dans Models, créons une deuxiéme classe POCO Adresse

namespace CoursWebApi.Models;

public class Adresse

{
public
public
public
public

public

int Id { get; set; }

string? Rue { get; set; }
string? Ville { get; set; }
string? CodePostal { get; set; }

ICollection<Personne> Personnes { get; set; } = [];

H & H: Research and Training 25/40

Circular references

ASP.NET Core

Modifions la classe Personne pour que I'association avec Adresse soit bidirectionnelle
namespace CoursWebApi.Models

public class Personne

{

public int Num { get; set; }

public string? Nom { get; set; }

public string? Prenom { get; set; }

public int Age { get; set; }

public ICollection<Adresse> Adresses { get; set; } = [];
}

H & H: Research and Training 26/40

ASP.NET Core

Modifions également le constructeur de Personneservice

public class PersonneService : IPersonneService

{

private readonly List<Personne> _personnes;

public PersonneService()

{
Adresse adresse = new() { Rue = "paradis", Ville = "Marseille", CodePostal = "13006" };
var personnel = new Personne { Num = 1, Nom = "Wick", Prenom = "John", Age = 45,

Adresses = { adresse } };

var personne2 = new Personne { Num = 2, Nom = "Dalton", Prenom = "Jack", Age = 40 };
var personne3 = new Personne { Num = 3, Nom = "Maggio", Prenom = "Sophie", Age = 20 };
adresse.Personnes.Add (personnel) ;
_personnes = [personnel, personne2, personne3];

}

// + le code précédent

Circular references

ASP.NET Core

Modifions également PersonneDto

using CoursWebApi.Models;

namespace CoursWebApi.Contracts;

// DTO pour lecture
public record PersonneDto(int Id, string? Nom, string? Prenom,
Adresses) ;

int Age,

ICollection<Adresse>

Circular references

ASP.NET Core

Mettons a jour les actions de PersonnesController utilisant PersonneDto

[HttpGet]

public async Task<ActionResult<IEnumerable<PersonneDto>>> GetAll ()
{

var list = await _service.GetAllAsync();

var dto = list.Select(p => new PersonneDto(p.Num, p.Nom, p.Prenom, p.Age, p.Adresses));
return Ok (dto);

https://localhost:<port>/api/personnes

Circular references

ASP.NET Core

Mettons a jour les actions de PersonnesController utilisant PersonneDto

[HttpGet]

public async Task<ActionResult<IEnumerable<PersonneDto>>> GetAll ()

{
var list = await _service.GetAllAsync();
var dto = list.Select(p => new PersonneDto(p.Num, p.Nom, p.Prenom, p.Age, p.Adresses));
return Ok (dto);

Relancez le projet et allez a https://localhost : <port>/api/personnes et vérifiez I'erreur suivante

System.Text.Json.JsonException: A possible object cycle was detected.

https://localhost:<port>/api/personnes

Circular references

ASP.NET Core

Remarque

En essayant de consulter la liste des personnes (avec leurs adresses respectives), on
a une boucle infinie (circular reference) car I'association est désormais
bidirectionnelle.

H & H: Research and Training 30/40

Circular references

ASP.NET Core

Remarque

En essayant de consulter la liste des personnes (avec leurs adresses respectives), on
a une boucle infinie (circular reference) car I'association est désormais
bidirectionnelle.

Cycles : 2 stratégies

Stratégie Avantage Limite

[JsonIgnore] contrdle fin, explicite ~ perte d’info / couplage sérialisation
IgnoreCycles rapide, global moins explicite, peut masquer un design

H & H: Research and Training 30/40

Circular references [JsonIgnore]

ASP.NET Core

Dans Adresse, décorons Personnes avec I'attribut [JsonIgnore] pour éviter sa
sérialisation avec les adresses

using System.Text.Json.Serialization;
namespace CoursWebApi.Models;

public class Adresse

{

public int Id { get; set; }

public string? Rue { get; set; }

public string? Ville { get; set; }

public string? CodePostal { get; set; }

[IJsonIgnore]

public ICollection<Personne> Personnes { get; set; } = [];
}

H & H: Research and Training 31/40

Relancez le projet et allez a https://localhost:7067/api/personnes et vérifiez le résultat suivant

[
{
"num": 1,
"nom": "Wick",
"prenom": "John",
"age": 45,
"adresses": [
{
"id": 0,
"rue": "paradis",
"ville": "Marseille",
"codePostal": "13006"
}
1
Y,
{
"num": 2,
"nom": "Dalton",
"prenom": "Jack",
"age": 40,
"adresses": []
i
{
"num": 3,
"nom": "Maggio",
"prenom": "Sophie",
"age": 20,
"adresses": []
}
1

https://localhost:7067/api/personnes

Circular references IgnoreCycle

ASP.NET Core

Deuxiéme solution : configurer globalement program.cs

// Pour casser les références circulaires
builder.Services.ConfigureHttpJdsonOptions (options =>
{
options.SerializerOptions.ReferenceHandler = ReferenceHandler.
IgnoreCycles;

})

H & H: Research and Training 33/40

Ignor

Relancez le projet et allez a https://localhost:7067/api/personnes et vérifiez le résultat suivant

[

"num": 1,

"nom": "Wick",

"prenom": "John",

"age": 45,

"adresses": [

{

"id": 0,
"rue": "paradis",
"ville": "Marseille",
"codePostal": "13006",
"personnes": [

{

"num!
"nom"
"prenom" :
"age": 45,
"adresses": null

"John",

"num": 2
"nom" :
"prenom" :
"age": 40,
"adresses": []

’
Dalton",
"Jack",

and Training

https://localhost:7067/api/personnes

ASP.NET Core

Le probléme : Mapping manuel

Le mapping manuel (DTO <> Entité) devient répétitif et difficile a maintenir.

H & H: Research and Training 35/40

ASP.NET Core

Le probléme : Mapping manuel

Le mapping manuel (DTO <> Entité) devient répétitif et difficile a maintenir.

Pourquoi utiliser AutoMapper ?

@ Réduction du code boilerplate.
@ Maintenance facilitée : régles centralisées.

@ Evolutivité : ajout de champs plus simple.

H & H: Research and Training 35/40

ASP.NET Core

Installation (CLI)

dotnet add package AutoMapper

H & H: Research and Training 36/40

AutoMapper

ASP.NET Core

Définissons une classe PersonneProfile qui hérite de Profile
using AutoMapper;

using CoursWebApi.Contracts;

using CoursWebApi.Models;

namespace ProjetWebApiEf.Mappers;

public class PersonneProfile: Profile

{
public PersonneProfile()
{
// Source => Destination
CreateMap<PersonneCreateDto, Personne>();
}

H & H: Research and Training 37 /40

oMapper

ASP.NET Core

Et si les propriétés ont un nom différent (1d et Num par exemple)

public class PersonneProfile: Profile

{

public PersonneProfile ()

{

// Source => Destination
CreateMap<PersonneCreateDto,
CreateMap<PersonneUpdateDto,

.ForMember (
dest => dest.Num,
opt => opt.MapFrom(src => src.Id)

Personne> () ;
Personne> ()

)i
CreateMap<Personne,
.ForMember (

dest=> dest.Id,
opt => opt.MapFrom(src => src.Num)

)i

H & H: Research and Training 38/40

PersonneResponseDto> ()

ASP.NET Core

Déclarer AutoMapper dans Program.cs

builder.Services.AddAutoMapper (typeof (PersonneProfile)) ;

H & H: Research and Training 39/40

AutoMapper

ASP.NET Core

Utiliser AutoMapper dans un endpoint POST

app .MapPost (" /api/personnes/am",
async (CreatePersonneDto input, IPersonneService service, IMapper
mapper) =>
var entity = mapper.Map<Personne> (input);
var created = await service.CreateAsync (entity);

var dto = mapper.Map<PersonneDto> (created);

return Results.Created($"/api/personnes/{dto.Num}", dto);
b

H & H: Research and Training 40/ 40

	Introduction
	Création du projet
	Structure de base : Program.cs
	Modèles + DTO
	Service (Business) + DI
	Endpoints Minimal API : GET / POST
	Validation : DataAnnotations + erreurs
	Middleware CORS
	Circular references
	[JsonIgnore]
	IgnoreCycles

	AutoMapper

